不定積分

\[\begin{equation} \int \frac{1}{a^2 + x^2} \dd x = \frac{1}{a}\arctan\frac{x}{a} \end{equation}\] \[\begin{equation} \int \frac{1}{a^2 - x^2} \dd x = \frac{1}{a}\artanh\frac{x}{a} \end{equation}\] \[\begin{equation} \int \frac{1}{\sqrt{a^2 - x^2}} \dd x = \arcsin\frac{x}{a} \end{equation}\] \[\begin{equation} \int \frac{1}{\sqrt{x^2 + a}} \dd x = \log\left| x + \sqrt{x^2 + a}\right| \end{equation}\]

$\tan{\frac{x}{2}} = t$ の置換積分

$x$ から $t$ へ $\tan{\frac{x}{2}} = t$ の置換。次のように変換される:

\[\begin{align} \dd x = \frac{2}{1 + t^2} \dd t \end{align}\] \[\begin{align} \sin x = \frac{2t}{1 + t^2}, \quad\cos x = \frac{1 - t^2}{1 + t^2}, \quad\tan x = \frac{2t}{1 - t^2} \end{align}\]

定積分

Gauss関数

\[\begin{gather} \int_{-\infty}^{\infty} e^{-ax^2} \dd x = \sqrt{\frac{\pi}{a}} \\ \int_{-\infty}^{\infty} x^2 e^{-ax^2} \dd x = \frac{1}{2}\sqrt{\frac{\pi}{a^3}} \\ \int_{-\infty}^{\infty} x^4 e^{-ax^2} \dd x = \frac{3}{4}\sqrt{\frac{\pi}{a^5}} \end{gather}\]

複素平面上で積分経路を虚軸方向にずらした場合:

\[\begin{align} \int_{-\infty}^{\infty} e^{-a(x + ib)^2} \dd x = \sqrt{\frac{\pi}{a}} \end{align}\]

三角関数

\[\begin{align} \int_{0}^{\frac{\pi}{2}} \sin^{n}x\dd x = \int_{0}^{\frac{\pi}{2}} \cos^{n}x\dd x = \begin{cases} \dfrac{(n-1)!!}{n!!}\dfrac{\pi}{2} \\\\ \dfrac{(n-1)!!}{n!!} \end{cases} \end{align}\]